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Introduction. The development of fast non-invasive screening systems that enable pathology to be
detected at an early stage of evolution is one of the important scientific and technological problems in
the field of medicine. One of the approaches that can ensure non-invasive diagnosis of diseases in real
time is an express analysis of human exhaled air [1]. The development of laser technologies in the
field of creating widely tunable quantum cascade lasers (QCLs) provides new opportunities for
creating fast, relatively compact and effective systems for diagnosing diseases according to the
composition of exhaled air.

1. Prospects of using QCL. As exhaled air 1s a complex gas mixture, analysis of its microstructure
requires high selectivity for the detection of target substances; insensitivity to nitrogen and oxygen, the
concentration of which are tens of percent; selectivity for water vapor and CO,. The mid-infrared
range, which contains the spectral lines of vibrational-rotational transitions, is very informative [2]. A
wide range of QCL rearrangements will make it possible to analyze simultaneously a large number of
different biomarker molecules.

2. Experimental setup. It is proposed to use an experimental setup, the circuit diagram of which is
shown in Fig. 1. Two main modules can be distinguished in the scheme: the radiation analysis module
(Fig. la) and the sample supply module (Fig. 1b).
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FIGURE 1. Schematic diagram of the experimental setup. a) radiation analysis circuit b) flow pattern of the
test sample: MFC — mass flow gas controller.

The following main technical solutions are proposed to achieve the highest possible sensitivity: use
of a reference photodetector; study of the sample inside an astigmatic multi-pass gas cell with an
optical path length of up to 76 m; removal of water from the test sample; evacuation of a gas cell to
eliminate the possibility of any atmospheric fluctuations.

3. Experimental results. Using QCL spectra of test membranous simulators and gas mixtures were
recorded in a multi-pass cell. Experimental sensitivity-estimations for certain chemical compounds,
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including biomarkers, were performed for setup based on QCL and multi-pass gas cell (table 1) [10].

These results were obtained for the optical path length of 6 m.
TABLE 1. The sensitivity of the experimental setup based on QCL with a multi-pass cell. [10].

Substance Detection limit

Methane 0.5 ppm
Formaldehyde 2.1 ppm

Ammonia 0.9 ppm

4. Expected results. A number of computational experiments were performed to test methods for
processing experimental data. A simplified model of a drained sample of exhaled breath was
considered (Fig. 2). The main component of model mixture (carbon dioxide) had nominal
concentration 300 ppm.
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FIGURE 2. Base spectra of mixture components (NIST).
Examples of model mixtures are shown on Fig. 3. In this work for mixture analysis we considered 3
methods: method of Bayes estimation, parametric optimization and double parametric optimization.
Table 2 shows results of model mixtures analyzing for the test spectral database for SNR=100.
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FIGURE 3, The spectra of the model mixture for various SNR: a) SNR = 50; b) SNR = 100.

TABLE 2. Results of computational experiments.

SNR Bayes estimation Parametric optimization Double parametric
oplimization
100 | Acetone ¢=0.14 ppm | Acetoncc= 153 ppmé | Acetone ¢ = 1.65 ppm b=
§=91%, =23%; 18%;
Ethanol ¢ = 0.08 ppm & | Ethanol¢=0.32ppmé | Ethanol ¢ = 0.68 ppm é =
= 02%; = 68%: 32%:
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Methanol ¢ = 0.04 ppm | Methanol ¢ =0.06 ppm | Methanol ¢ = 0.03 ppm &
& =59% & =40% =T71%

Conclusions. The main goal of medical diagnostic systems is to provide a practicing doctor with a
tool for effective diagnosis and monitoring of the course of the disease. Methods of absorption
spectroscopy, which are the basis for the design of the radiation analysis module, will ensure the
operation of the system in real time.

The reported study was funded by RFBR according to the research project Ne]8-29-02024.
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